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Abstract

Growing evidence from the emerging and developed world indicates a link between en-

vironmental conditions and mental wellbeing, however, little is known about the relationship

between this relationship in the developing world where environmental conditions are often

much harsher and the demands on mental health can be substantial. In this paper we investi-

gate the link between exposure to high temperatures and particulate matter and self-reported

mental health in India data from a massive, nationwide survey linked to conditions at each re-

spondent’s residence in the time leading up to their enumeration. While, we find that exposure

to higher temperatures and concentrations of particulate matter in the lead up to enumeration

is predictive of poorer self-reported mental well-being, we also identify an adaptive spillover

effect whereby harms from PM exposure are lower-magnitude on hot days.
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1 Introduction

Mental health is increasingly recognized as a major dimension of general human health and well-

being, with mental and addictive disorders estimated to drive from a fifth to a third of all years

lived with disability globally (Vigo, Thornicroft, and Atun 2016; Rehm and Shield 2019). Fo-

cusing more narrowly, it is estimated that as of 2019, approximately 5% of adults globally suffer

from depression (WHO 2023). This rate is higher among those over 55 globally (5.7%), and

among those over 55 living in India (7.1%) (WHO 2023; IHME 2019). In this examination, we

will consider how ambient environmental conditions impact self-reported measures of depression

symptoms among older Indians.

As the importance and prevalence of mental health concerns and depression specifically have be-

come ever more apparent, it has also become increasingly clear that environmental factors play a

significant role in mental health. For instance, a series of investigations have linked realizations of

high-temperatures to increased incidences of negative mental health outcomes ranging from self-

assessments of mental well-being (Obradovich et al. 2018; Mullins and White 2019) to suicides in

both developed (Mullins and White 2019; Burke et al. 2018) and emerging (Burke et al. 2018; Car-

leton 2017) economies. Air pollution too has been increasingly linked to a range of mental health

problems, including anxiety, depression, and suicide (Chen, Oliva, and Zhang 2018; Braithwaite

et al. 2019; Gu et al. 2020; Persico and Marcotte 2022; Molitor, Mullins, and White 2023; Zhang

et al. 2024).

Even as evidence has mounted that temperatures and air pollution independently compromise men-

tal well-being, it is important to recognize that environmental exposures do not happen in isolation.

In addition to assessing the individual relationships between self-reported depressive symptomatic

and both temperatures and PM, we therefore also evaluate cross-exposure impacts of simultaneous

exposures to high temperatures and high ambient PM levels.

The investigations in this paper, contribute to the understanding of the short-term associations
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between mental health outcomes and two environmental conditions, namely, air pollution and high

temperatures. Our analysis relies on three primary data sources that allows us to measure self-

reported mental health status, ambient PM2.5 concentrations, average temperatures for each states

in India from 2017-2019. Specifically, we use LASI data on mental health based on the ten-

question, Center for Epidemiological Studies Depression (CES-D) scale, which focuses on the 7-

day period leading up to the survey. Mean temperature averaged over 7 days and monthly average

PM2.5 ambient concentrations.

Our empirical strategy relies on matching measures of mental health state and week including the

date of the survey to temperature at fine spatial and temporal scales (state and week including the

date of the survey) and air quality (state and month). We then apply panel fixed effect regression

models, with rich fixed effects to include location by year fixed effects. Though we estimate our

results to allow for the relationship between environmental conditions and mental health outcome

more flexibly to allow for non-linearities, our main results are derived from the evidence of linearity

between the outcome variable of interest and the environmental conditions.

We find that the incidence of depressive symptoms among older Indians increases in both temper-

atures and ambient PM2.5 levels. This is the first evidence that these environmental stressors are

harmful to mental well-being among older adults in India, and the first evidence that both high

temperatures and PM levels are harmful to mental health identified simultaneously in any popula-

tion. We are then able to go further and consider non-additive effects of simultaneous exposures

to these two environmental stressors. We we find somewhat larger increases in depressive symp-

toms in response to higher ambient PM2.5 concentrations when temperatures are low than when

temperatures are high. This may be because some adaptive measures to easily observable high

temperature increases also serve to moderate the harm from less-observable rises in PM2.5, a sort

of “spillover adaptation” which has not been previously identified.

The remaineder of the paper is organized as follows. The next section provides details on the

setting and data of our investigation. Section 3 lays out our empirical approach and Section 4
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describes our results. We discuss our findings and conclude in Section 5

2 Data

This investigation is based on linking environmental conditions to self-reported measures of men-

tal health. In particular, we link weather data and measures of fine particulate matter on the day

of and period preceding survey enumeration from Wave 1 of the Longitudinal Aging Study of

India (LASI). LASI is a survey of people aged 45 and older and their partners, living in private

households in India. The sample is representative of Indias 29 states and 6 union territories and

four selected metropolitan cities (Delhi, Kolkata, Mumbai, and Chennai). This investigation re-

lies solely on data from Wave 1, collected between 2017 and 2019, which is all that is currently

available.

LASI recruited 42,949 households (96% participation rate) and 72,250 respondents (87% partici-

pation rate). The sample was recruited using a stratified, multi-stage cluster sampling of all house-

holds in India. The specifics of sampling approach for the study are available in (Arokiasamy

et al. 2012). A household and an individual survey are complete by or for each respondent. The

household survey characterizes participants physical environment and household finances. This

survey is completed by any knowledgeable household member aged 18 years or older. The in-

dividual survey is completed only by age-eligible household members and their spouses unless a

proxy respondent was needed. This survey characterizes participant demographics, health includ-

ing mental health and health behaviors. All survey questions are translated into the local dialect

(e.g., Telegu, Malayalam) and interviews are done in the language of respondents choice.

2.1 Weather Data

Onto each LASI survey response we merge weather data based on the date of enumeration and lat-

itude and longitude of the respondent’s residence. Weather data is from the ERA5-Land reanalysis

data product maintained by the European Centre for Medium-Range Weather Forecasts (Muñoz
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Sabater et al. 2019). We begin with the hourly observations from this dataset on temperature, dew-

point temperature, precipitation, barometric pressure, and cloud cover for points on a 0.1◦ × 0.1◦

over all of India. We aggregate the hourly values to the daily level, capturing minimum, mean,

and maximum values for each variable except precipitation for which hourly values are summed

to a daily total. We next create a series of bin indicators for each weather variable, which capture

whether daily values of each variable fell in specified ranges. For instance, daily mean tempera-

tures – which are the focus of our investigation of weather conditions in this study – are grouped

in to 2◦C wide bins, ranging from < 20◦C in 2◦C increments 20-22◦C to >38◦C.

Similar bins are created for each measure of daily weather, and these indicators are then summed

across the day of LASI enumeration and the preceding six days. This procedure results in a series of

counts of the number of days in the week leading up to and including the day of LASI enumeration

in which weather conditions fell in each bin-range. This approach allows us to flexibly estimate

(or control for) the effects of weather conditions at the place of residence over the week leading

up to the observed survey responses. See Appendix Section for additional details, bin ranges, and

summary statistics.

———–

2.2 Air Quality Data

Air pollution data from monitors is sparse in India during the 2017-2019 period of our study, espe-

cially outside major cities. We therefore utilize modelled data on ambient PM2.5 concentrations at

the monthly level from the Satellite-Based Application For Air Quality Monitoring and Manage-

ment at National Scale (SAANS). This data provides monthly average PM2.5 concentrations for all

of India on a 1km grid (Dey et al. 2020).

We estimate the average PM2.5 concentration at the place of residence of each LASI respondent

for 30-day period leading up to the day of the survey. This is done by taking the weighted average

of the PM2.5 concentrations from the nearest gridcell in the SAANS data for the calendar month
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of the survey completion and the prior month with weights assigned based on how much of the

30-day period falls in each calendar month.

We also create six indicator variables which take on the value 1 if the monthly PM2.5 measure falls

in 25 µg/m3 bins ranging from 0-25µg/m3 up to >125µg/m3.

2.3 Outcomes

Our main outcomes of interesting are self-reported mental health measures collected by LASI.

In particular, we examine scores from the 10-question Center for Epidemiological Studies De-

pression (CES-D) scale. This instrument asks respondents to consider how frequently each of 10

depression-related symptoms were experienced during the 7-day period leading up to the survey.

Options are: rarely or none of the time (less than 1 day), some or a little of the time (1-2 days), oc-

casionally or moderate amount of the time (3-4 days), most or all of the time (5-7 days). Responses

are coded with integer values from 1-4, with higher values indicating more frequent experiences of

negative symptoms. Summary statistics of some relevant demographic and mental health variables

and relevant demographic are provide in Table 1.

2.4 Privacy Considerations

In order to protect the identities and privacy of LASI respondents, state is the most specific infor-

mation provided for respondent place of residence. By special request, LASI data administrators

provided us with weather and PM2.5 conditions linked to each LASI response based on exact date of

enumeration and latitude and longitude of residence, however values of these variables were only

provided after they were aggregated over extended time periods (seven days for weather conditions

and thirty days for PM2.5) in order to prevent ex post location identification.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5)
Mean StdDev. Min Max Obs

Female 0.578 0.494 0 1 66,287
Age 57.801 11.592 18 116 66,287
Caste
Scheduled Caste(SC) 0.169 0.375 0 1 66,287
Scheduled Tribe(ST) 0.163 0.370 0 1 66,287
Others(O) 0.386 0.487 0 1 66,287
No caste(NC) 0.282 0.450 0 1 66,287
Rural 0.657 0.474 0 1 66,287
Access 0.664 0.472 0 1 66,287
ADL 0.202 0.757 0 5 66,274
IADL 0.404 0.815 0 3 66,274
CES-D (higher is more often) 9.466 4.028 0 30 66,287
Trouble concentrating 1.521 0.783 1 4 66,284
Feel depressed 1.545 0.785 1 4 66,285
Feel Tired 1.842 0.88 1 4 66,286
Feel afraid 1.376 0.722 1 4 66,285
Feel satisfied 2.02 0.985 1 4 66,284
Feel alone 1.486 0.797 1 4 66,285
Feel unusually bothered 1.626 0.835 1 4 66,283
Feel everything was effort 1.756 0.923 1 4 66,281
Feel hopeful about future 2.135 1.007 1 4 66,281
Feel happy 2.5 0.985 1 4 66,283
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3 Empirical Approach

To establish the short-term causal impact of weather and air pollution on our measures of mental

health, we adopt a panel fixed effect methodology based on location-by-month and location-by-

year fixed effects in all specifications. While we control for a range of environmental conditions,

our focus will be on the effects of temperature and PM2.5 concentration levels. Our main specifica-

tion is:

Yirsdmy = f (Temprdmy) + g(PMrdmy) + Xrdmy + δsm + δsy + ϵirsdmy (1)

Yirsdmy is the outcome variable, and for this investigation is most commonly the aggregate CES-D

score per individual respondent, i, living at residential location r, in state s, collected on day, d,

of month m, in year, y. Our specification includes a function of the temperatures in the seven

days leading up to the day of enumeration and a function of the average PM2.5 concentration in

the 30 days leading up to the day of enumeration. Our main estimates are based on a function

of temperatures which includes counts of the number of days (of the last seven) with maximum

temperatures in each of six 4◦C bins with the bin for <20◦C omitted as the baseline category. In

other specifications, the mean of the daily maximum temperature over the last seven days enters

linearly. For PM2.5, our main specification includes indicator variables for which of the six 25

µg/m3-wide bins the 30-day mean concentration was in. The lowest pollution category, 0-25µg/m3,

is omitted.

All specifications control flexibly for weather conditions including precipitation, dew point tem-

perature, barometric pressure, and cloud cover using counts of days on which conditions fell into

various bins. Additionally, state-by-month and state-by-year fixed effects control for time-constant

local conditions, local seasonality, and state-and-year-specific idiosyncratic shocks. Because we

are limited by data use restrictions to the coarse geographic scale of state for our fixed effects,

we also control for a series of individual- specific respondent characteristics including gender, 5-

year age cohort, caste, and education level (<5, 5-9, or >9 years), as well as household-specific
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characteristics including: annual household consumption quintile and rural residence.

Identifying variation is therefore based on deviations in conditions at the residence of LASI re-

spondents on the day of (and days leading up to) enumeration relative to norms in the state of

residence for the month, once individual demographic characteristics and statewide shocks are ac-

counted for. Because the date of enumeration for each LASI respondent was determined based on

logistical considerations long in advance, the deviation of conditions at the respondent’s residence

on the day of enumeration from local, seasonal norms, is likely to be as good as random for each

respondent. Based on this identifying assumption, we interpret our estimates as the causal effects

of recent, daily temperatures and monthly PM2.5 on the self-assessed mental health outcomes we

consider.

4 Findings

4.1 Baseline Impacts

The coefficient estimates for temperature and PM2.5 bins are shown graphically in Figure in 1 (and

reported in Table 1). CESD-10 scores generally increase as both temperatures and concentrations

of PM2.5 increase. Because CESD scores measure the frequency of depressive symptoms, our

estimates provide causal evidence that higher temperatures and poorer air quality negatively impact

mental well-being. Because all these estimates derive from a single regression, our estimates are

evidence that the temperature effects are clear even when controlling for PM2.5 levels and visa

versa.

The magnitude of our estimates suggest that if one of the last seven days had a maximum temper-

ature between 32-36◦C rather than being <20◦C, CESD-10 scores would be 0.173 points (or 4.3%

of a standard deviation) higher. Our estimates for PM2.5 imply that if average concentrations over

the preceding 30-days were over 125µg/m3 rather than being below 25µg/m3, CESD-10 scores

would be 0.74 points (or 18.4% of a standard deviation) higher. Coefficients for most bins but are

significant at the 1% level, and all are significant at the 5% level.
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Figure 1: Baseline Estimates with Maximum temperature and PM Bins
Notes: Shaded areas represent 95% confidence intervals based on standard errors clustered by household.
All estimates are from a single regression with the CESD-10 score as the outcome. The temperature coeffi-
cients can be interpreted as the effect of one additional day in the relevant bin, relative to a day below 20◦C
. The PM2.5 coefficients can be interpretted as the effect of the 30-day average concentration falling in the
indicated range rather than below 25ug/m3.
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Table 2: Estimates for Figure 1

(1)
CESD-10

Score

Panel A - Max Temperature Bins
20◦-24◦C 0.08864**

(0.04178)
24◦-28◦C 0.12684***

(0.04389)
28◦-32◦C 0.15770***

(0.04722)
32◦-36◦C 0.17267***

(0.04869)
> 36◦C 0.16604***

(0.05478)

Panel B - PM2.5 Bins
PM2.5 25-50µg/m3 0.39984***

(0.09839)
PM2.5 50-75µg/m3 0.42907***

(0.13122)
PM2.5 75-100µg/m3 0.53573***

(0.15861)
PPM2.5 100-125µg/m3 0.54240***

(0.20135)
PM2.5 > 125µg/m3 0.73917**

(0.29139)

N 66,287
*- p<0.10 **- p<0.05 ***-p<0.01

Notes: Reports the estimates used to construct
Figure 1. All estimates are from a single re-
gression with the CESD-10 score as the out-
come. Standard errors in parenthesis are clus-
tered by household. Regression includes state-by-
month and state-by-year fixed effects as well as
the full set of weather and demographic controls
described in the text.
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For both temperature and PM2.5, the dose-response relationship with CESD-10 scores appears

more-or-less linear across the range of conditions in our sample. One notable exception to the

overall linearity of the estimated relationships is the coefficient for the highest temperature bin

(>36◦C), which takes on a smaller value than the coefficient of the next hottest bin. One potential

explanation for this, is the fact that LASI survey enumerators had leeway within the assigned day

regarding the exact time of enumeration. During the hottest stretches, it is more likely that enu-

merators would seek to schedule surveys during cooler times of the day, such as the morning. Such

strategic intra-day heat avoidance, if it occurred more frequently during the hottest periods, could

explain attenuated estimates for the highest temperature bin that we observe. We also note how-

ever, that (Carleton 2017) also identifies a distinctly concave dose response relationship between

temperatures and suicide in India.

Given general the linear character of our estimated dose response relationships, we next estimate

models with simple linear terms which simplify interpretation and further investigation. In 3, col-

umn 1 reports the estimates for the coefficients on the linear measures of the 7-day average of daily

maximum temperatures and the 30-day average ambient PM2.5 concentration. These coefficients

suggest that a 1◦C increase in the 7-day average of the daily max temperature is associated with

a 0.023 point increase in the CESD-10 score, while a 10µg/m3 increase in the 30-day average

PM2.5 level is associated with a magnitude increase in CESD-10 scores of 0.044 points. Column

2 adds an interaction between the linear temperature and PM2.5 measures providing more precise

estimates and yielding a negative coefficient on the interaction term. This suggests that the effects

of temperature and air pollution are not simply additively separable as is implicitly assumed by

most estimation approaches, but instead that higher levels of temperature may somehow moderate

damages from PM2.5 and/or visa versa.

We next decompose the linear estimates of maximum daily temperature and PM2.5 by the level of

the other exposure measure by interacting the linear measure of each with bin-indicators for the

other. Estimates are depicted in Figure 2 and show that while an increase in temperature appears to
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Table 3: Temperature Measure Comparison

(1) (2) (3) (4)
CESD-10 Score CESD-10 Score CESD-10 Score CESD-10 Score

Max Daily Temp (◦C) 0.02309∗ 0.05841∗∗∗

(0.01273) (0.01828)
Min Daily Temp (◦C) 0.05844∗∗∗ 0.07994∗∗∗

(0.01370) (0.01828)
PM2.5(µg/m3) /10 0.04433∗ 0.23900∗∗∗ 0.05343∗∗ 0.12856∗∗∗

(0.02510) (0.07533) (0.02519) (0.04962)
Interaction -0.00706∗∗∗ -0.00449∗

(0.00256) (0.00252)

N 66,287 66,287 66,287 66,287
*- p<0.10 **- p<0.05 ***- p<0.01
Notes: Standard Errors clustered by household

have a fairly consistent impact on CES-D scores across PM2.5 levels (righthand panel), the harm-

ful impact of increased-PM2.5 levels are larger at low temperatures. Put another way, increases

in air pollution appear somewhat less harmful when it is hot out. It could be that avoidance be-

haviors taken in the face of observed high temperatures – staying indoors, using air conditioning,

and/or avoiding strenuous activities, for example – may provide some adaptive benefits against the

harms of air pollution exposure. We don’t see much evidence of such multi-exposure adaptation

arising at high levels of PM2.5, perhaps because changes in air pollution are less salient, or typi-

cal avoidance behaviors – wearing masks for instance – may not ameliorate harm from increased

temperatures.

In any case, this evidence of intra-exposure adaptive spillover suggests a more complicated picture

for projecting future damages from air pollution. Our results suggest that not only air quality, but

also temperatures and perhaps available means of adaptation to temperature need also be consid-

ered in a careful implementation of such an exercise.
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Figure 2: Heterogeneity Results by Level of Other Exposure
Notes: Left panel shows coefficients on the linear measure of PM2.5 concentration separately for each
temperature bin. Right panel shows coefficients of 7-day average daily maximum temperature by PM2.5
level. Estimates come from a single regression with the CESD-10 score as the outcome. 95% confidence
intervals are based on standard errors clustered by household. Regressions include state-by-month and
state-by-year fixed effects as well as the full set of weather and demographic controls described in the text.
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Figure 3: Heterogeneity Results with respect to Linear Temperature and PM Levels
Notes: Coefficients plotted for interaction of indicators for each demographic category with the linear mea-
sure of temperature in the left-hand graph and the linear measure of PM2.5 in the right-hand graph. Estimates
for each demographic grouping are from a single regression with the CESD-10 score as the outcome. 95%
confidence intervals are based on standard errors clustered by household. Regressions include state-by-
month and state-by-year fixed effects as well as the full set of weather and demographic controls described
in the text.
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4.2 Heterogeneity Results

Figure 3 reports estimates by socio-economic subgroup for the main linear measures of temperature

and PM2.5, when no interaction term is included. Overall, we don’t see much heterogeneity in

the responses of CESD-10 scores to the linear measures of temperature and PM2.5, by group.

Coefficients are generally similar between men and women, and across age groups. There is some

suggestive evidence that the least affluent (those in the first consumption quintile) and the least

educated are more senesitive to temperature increases, perhaps because these groups have the

least access to means of avoidance of high temperatures. Additionally, we see some evidence

rural respondents are more sensitive to increases in both temperature and air pollution. This is

consistent with findings of (Molitor, Mullins, and White 2023) regarding the higher responsiveness

of suicides in the United States to both wildfire smoke and higher temperatures in rural areas, and

may be because of higher likelihood of exposures to outside conditions among rural populations

in both cases. Finally we see that respondents identifying as among Scheduled Tribes appear more

susceptible to harm from both higher temperatures and PM2.5. Given that this group tends to be

less affluent and concentrated in more rural areas, this is generally consistent with our other

5 Discussion and Conclusion

While there is growing evidence that environmental conditions impact mental health and well-

being, environmental exposures never happen in isolation. This investigation provides the first

evidence of non-additievly separable effects of environmental exposures on mental health. Specif-

ically, we find somewhat larger increases in depressive symptoms in response to higher ambient

PM2.5 concentrations when temperatures are low than when temperatures are high. This may be

because some adaptive measures to easily observable high temperature increases also serve to

moderate the harm from less-observable rises in PM2.5, a sort of “spillover adaptation” which has

not been previously identified.

Whether or not this adaptation story is correct, the significant interactive relationship between
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high temperatures and PM2.5 concentrations identified here underscores the necessity of account-

ing for temperatures when considering changes in PM levels and vice versa. Practically, this means

accounting for climate-change-induced temperature changes when considering the benefits of pol-

lution rregulation and factoring in anticipated PM levels when calculating expected damages from

climate change (or avoided harm from mitigation efforts). Accounting for cross-factor interactions

in harm is especially consequential when considering scenarios in which both temperatures and air

quality may be impacted, such as the adoption of electric vehicles or the transition from fossil fuels

to renewable sources of electricity generation. Our results show that any such accounting which

simply sums the benefits of improved air quality and temperature decreases will inappropriately

inflate achievable benefits or avoidable damages.

We all operate in complex exposure environments. While we are unable to characterize the full

interaction space with this investigation, we hope our identification of one important interactive

relationship in the environment-mental-health dose-response function spurs further investigation

of exposure interactions and careful consideration of such in projection exercises.
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Supplemental Appendix for Online Publication

SA1 Data

SA1.1 Pollution and weather data

Hourly data is aggregated to daily mean, minimums, and maximums temperatures. Temperature
data are grouped in to 2◦C wide bins, ranging from 20-22◦C to >38◦C. Number of days in each
temperature bin are summed over day of interview and preceding 6 days in the sample. The inde-
pendent variable of interest is therefore count of days for which a state had maximum temperature
in each bin in 7-days. In alternative specification for all outcomes we also use a simple specifica-
tion that uses continuous mean/maximum/minimum temperature averaged over 7 days in place of
temperature bins.

SA1.1.1 Relative Humidity

The data source on humidity is derived from the ERA5 reanalysis data product from the European
Centre for Medium-Range Weather Forecasts. This contains hourly data on dewpoint for points on
a 0.1◦ × 0.1◦ grid for India over the period. Hourly data is aggregated to daily average dewpoint.
Dewpoint data are grouped in to 2◦C wide bins, ranging from 8-10◦C to >28◦C. Number of days in
each average dewpoint bin are summed over day of interview and preceding 6 days in the sample.
The independent variable of interest is therefore count of days for which a state had an average
dewpoint in each bin in 7-days.

SA1.1.2 Precipitation

The data source on precipitation is derived from the ERA5 reanalysis data. This contains hourly
data on precipitation. Hourly data is aggregated to daily mean precipitation. The units of precip-
itation are depth in metres. Precipitation data are grouped in to 10 m wide bins, ranging from 0,
>0-10m to >40m. Number of days in each precipitation bin are summed over day of interview and
preceding 6 days in the sample. The independent variable of interest is therefore count of days for
which a state had an average precipitation in each bin in 7-days.
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SA1.1.3 Barometric Pressure

The pressure within the Earths atmosphere is derived from the ERA5 reanalysis data. Barometric
data are grouped in to 5000 Pascal width bins, ranging from under 80000 Pascal, up to 100,000
Pascal. The independent variable of interest is therefore count of days for which a state had an
average barometric pressure in each bin in 7-days including the date of the interview.

SA1.1.4 Total Cloud Cover

Bin indicators for 20 percentage point bins in share of daytime with Cloud Cover.

SA2 Robustness

If we are to take the estimates for temperature and PM2.5 seriously, it is important to know that the
coefficients on the included controls are also reasonable. Figure SA2 presents the coefficients on
the demographic controls from our main regression. We see that in general:

1. females report more depressive symptoms than males,

2. depressive symptoms increase across age

3. those in more affluent households report fewer depressive symptoms,

4. depressive symptoms decrease in education level, and

5. those with the highest status in the caste system (i.e.: "No Caste") report the least depressive
symptoms.

All of these associations are in line with typical findings, lending credibility to the estimates for
temperature and PM2.5 from the same regression.
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Figure SA1: Coefficient Estimates on Demographic Controls from Main Regression
Notes: Whiskers represent 95% confidence intervals based on standard errors clustered by household. All
estimates are from the same, single regression with the CESD-10 score as the outcome from which the
estimates in Figure 1 are taken. All demographic characteristics enter as indicator variables with the omitted
value for each characteristic indicated in paranthesis next the relevant group heading. Consumption is the
preferred measure of affluence by the LASI staff.
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Figure SA2: Mean Exposures by Demographic Characteristics
Notes: Midline represents level of median, box bottom and top indicate 25th and 75th percentiles respec-
tively, and whiskers show 1.5 times the inter-quartile range subtracted and added to the bottom and top of
the box respectively.
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Figure SA3: Baseline Estimates by Individual CESD Question
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